
姓名: 姚約東
職稱(chēng): 教授、博導(dǎo)
教育與工作經(jīng)歷:
1991-1995 中國(guó)石油大學(xué)(華東) 本科
1995-1997 中國(guó)石油大學(xué)(北京) 碩士研究生
1997-2000 中國(guó)石油大學(xué)(北京) 博士研究生
2011-2012 美國(guó)Colorado School of Mines大學(xué) 訪(fǎng)問(wèn)學(xué)者
2011-現(xiàn)在 中國(guó)石油大學(xué)(北京) 教授
電子郵箱: [email protected]
聯(lián)系電話(huà): 010-89732216,13611279382
所在系所: 油氣田開(kāi)發(fā)工程系
教學(xué)情況:先后主講《油藏工程》、《油層物理與油藏工程》、《氣藏工程》、《油氣田開(kāi)發(fā)》和《現(xiàn)代試井分析》等課程,其中《油藏工程》課程為北京市精品課程。參與編著的博士生教材《現(xiàn)代油藏滲流力學(xué)原理》被北京市教委評(píng)為精品教材,連續(xù)獲得中國(guó)石油大學(xué)(北京)第六屆和第七屆優(yōu)秀教學(xué)成果一等獎(jiǎng),被評(píng)為全國(guó)石油工程設(shè)計(jì)大賽優(yōu)秀指導(dǎo)教師。被授予中國(guó)石油大學(xué)(北京)“優(yōu)秀教師”、“科技創(chuàng)新優(yōu)秀指導(dǎo)教師”、“本科畢業(yè)設(shè)計(jì)優(yōu)秀指導(dǎo)教師”、“優(yōu)秀碩士學(xué)位論文指導(dǎo)教師”和“優(yōu)秀博士學(xué)位論文指導(dǎo)教師”等榮譽(yù)稱(chēng)號(hào),被聘請(qǐng)為中國(guó)石油大學(xué)(北京)第八屆校學(xué)術(shù)委員會(huì)委員,入選教育部“新世紀(jì)優(yōu)秀人才”。
研究方向: 油藏工程, 油氣滲流理論與應(yīng)用, 非常規(guī)油氣田開(kāi)發(fā)
近期代表性論文著作:
[1] A novel high-dimension shale gas reservoir hydraulic fracture network parameters optimization framework[J]. Geoenergy Science and Engineering, 2023, 229: 212155.
[2] An integrated approach for history matching of complex fracture distributions for shale oil reservoirs based on improved adaptive particle filter[J]. SPE Journal, 2023, 28(02): 594-613.
[3] A critical review on intelligent optimization algorithms and surrogate models for conventional and unconventional reservoir production optimization[J]. Fuel, 2023, 350: 128826.
[4] CO2驅(qū)氣體賦存特征微觀(guān)可視化實(shí)驗(yàn) [J]. 石油鉆采工藝, 2023, 45 (3):358-367.
[5] 低滲透-致密砂巖油藏水相啟動(dòng)壓力梯度實(shí)驗(yàn)測(cè)試方法 [J]. 油氣地質(zhì)與采收率, 2023, 30 (3):87-93.
[6] Integrated optimization design for horizontal well spacing and fracture stage placement in shale gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2022, 105: 104706.
[7] A hybrid surrogate-assisted integrated optimization of horizontal well spacing and hydraulic fracture stage placement in naturally fractured shale gas reservoir[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110842.
[8] Data-driven multi-objective optimization design method for shale gas fracturing parameters. Journal of Natural Gas Science and Engineering, 2022: 104420.
[9] A novel self-adaptive multi-fidelity surrogate-assisted multi-objective evolutionary algorithm for simulation-based production optimization. Journal of Petroleum Science and Engineering, 2022: 110111.
[10] Hybrid application of unsupervised and supervised learning in forecasting absolute open flow potential for shale gas reservoirs. Energy, 2022, 243: 122747.
[11] 基于代理輔助野草猴群算法的井位優(yōu)快決策方法 [J]. 大慶石油地質(zhì)與開(kāi)發(fā), 2022, 41 (5): 93-100.
[12] 基于三維嵌入式離散裂縫模型的致密油藏體積壓裂水平井?dāng)?shù)值模擬 [J]. 大慶石油地質(zhì)與開(kāi)發(fā), 2022, 41 (06):143-152.
[13] A novel surrogate-assisted multi-objective optimization method for well control parameters based on tri-training. Natural Resources Research, 2021: 1-17.
[14] 川西潮坪相裂縫型碳酸鹽巖分層酸壓井壓力動(dòng)態(tài)分析. 巖性油氣藏, 2020, 032(01): 152-160.
[15] A slip-flow model for oil transport in organic nanopores. Journal of Petroleum Science and Engineering, 2019, 172: 139-148. (ESI高被引論文)
[16] Transport behaviors of real gas mixture through nanopores of shale reservoir. Journal of Petroleum Science and Engineering, 2019, 177: 1134-1141.
[17] 潮坪相碳酸鹽巖酸壓改造油井壓力動(dòng)態(tài)特征. 石油鉆采工藝, 2019, 41(04): 541-548.
[18] Simulation of real gas mixture transport through aqueous nanopores during the depressurization process considering stress sensitivity. Journal of Petroleum Science and Engineering, 2019, 178: 829-837.
[19] A numerical model for wet steam circulating in horizontal wellbores during starting stage of the steam-assisted-gravity-drainage process. Heat and Mass Transfer, 2019, 8: 2209-2220.
[20] The Heat and Mass Transfer Characteristics of Superheated Steam Coupled with Non-condensing Gases in Horizontal Wells with Multi-point Injection Technique. Energy, 2018, 143: 995-1005. (ESI高被引論文,ESI熱點(diǎn)論文)
[21] Effect of Friction Work on Key Parameters of Steam at Different State in Toe-point Injection Horizontal Wellbores. Journal of Petroleum Science and Engineering, 2018, 164: 655-662. (ESI高被引論文,ESI熱點(diǎn)論文)
[22] Analysis of Superheated Steam Performance in Offshore Concentric Dual-tubing Wells. Journal of Petroleum Science and Engineering, 2018, 166: 984-999. (ESI高被引論文,ESI熱點(diǎn)論文)
[23] An Improved Two-phase Model for Saturated Steam Flow in Multi-point Injection Horizontal Wells under Steady-state Injection Condition. Journal of Petroleum Science and Engineering, 2018, 167: 844-856. (ESI熱點(diǎn)論文)
[24] Effect of Flowing Seawater on Supercritical CO2 - Superheated Water Mixture Flow in an Offshore Oil Well Considering the distribution of heat generated by the work of friction. Journal of Petroleum Science and Engineering, 2018, 162: 460-468. (ESI高被引論文)
[25] Flow Simulation of the Mixture System of Supercritical CO2 & Superheated Steam in Toe-point Injection Horizontal wellbores. Journal of Petroleum Science and Engineering, 2018, 163: 199-210. (ESI高被引論文)
[26] A Numerical Model for Predicting Distributions of Pressure and Temperature of Superheated Steam in Multi-point Injection Horizontal Wells. International Journal of Heat and Mass Transfer, 2018, 121: 282-289. (ESI高被引論文)
[27] Exploitation of Heavy Oil by Supercritical CO2: Effect Analysis of Supercritical CO2 on H2O at Superheated State in Integral Joint Tubing and Annuli. Greenhouse Gases: Science and Technology, 2018, 8(3): 557-569. (ESI高被引論文)
[28] Type curve analysis of multi-phase flow of multi-component thermal fluid in toe-point injection horizontal wells considering phase change. Journal of Petroleum Science and Engineering, 2018, 165: 557-566. (ESI高被引論文)
[29] Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency. Energy, 2017, 125: 795-804. (ESI高被引論文)
[30] A numerical approach for obtaining type curves of superheated multi-component thermal fluid flow in concentric dual-tubing wells. International Journal of Heat and Mass Transfer, 2017, 111: 41-53. (ESI高被引論文)
[31] The flow and heat transfer characteristics of superheated steam in offshore wells and analysis of superheated steam performance. Computers &Chemical Engineering, 2017, 100: 80-93. (ESI高被引論文)
[32] Type Curve Analysis of Superheated Steam Flow in Offshore Horizontal wells. International Journal of Heat and Mass Transfer, 2017, 113: 850-860. (ESI高被引論文)
[33] The Mass and Heat Transfer Characteristics of Superheated Steam Coupled with Non-condensing Gases in Perforated Horizontal Wellbores. Journal of Petroleum Science and Engineering, 2017, 156: 460-467. (ESI高被引論文)
[34] The flow and heat transfer characteristics of superheated steam in concentric dual-tubing wells. International Journal of Heat and Mass Transfer, 2017, 115: 1099-1108. (ESI高被引論文)
[35] A Fractal Model for Oil Transport in Tight Porous Media. Transport in Porous Media, 2018, 121: 725-739.
[36] Pressure transient analysis of multi-fractured horizontal wells in tight oil reservoirs with consideration of stress sensitivity. Arabian Journal of Geosciences, 2018, 11(11): 285.
[37] Numerical Simulation of Supercritical-Water Flow in Concentric-Dual-Tubing Wells. SPE Journal, 2018, 23(6): 2188–2201.
[38] Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells. Energy, 2018, 158: 760-773.
[39] A coupled model for CO2 & superheated steam flow in full-length concentric dual-tube horizontal wells to predict the thermophysical properties of CO2 & superheated steam mixture considering condensation. Journal of Petroleum Science and Engineering, 2018, 170: 151-165.
[40] Performance of geothermal energy extraction in a horizontal well by using CO2 as the working fluid. Energy Conversion and Management, 2018, 171: 1529-1539.
[41] Geothermal energy development by circulating CO2 in a U-shaped closed loop geothermal system. Energy Conversion and Management, 2018, 174: 971-982.
[42] Analytical model for production performance analysis of multi-fractured horizontal well in tight oil reservoirs. Journal of Petroleum Science and Engineering, 2017, 158:380-397.
[43] A Numerical Study on the Non-isothermal Flow Characteristics of Superheated Steam in Ground Pipelines and Vertical Wellbores. Journal of Petroleum Science and Engineering, 2017, 159:68-75.
[44] 致密油藏體積壓裂水平井不穩(wěn)定壓力分析. 水動(dòng)力學(xué)研究與進(jìn)展: A輯, 2017, 32(4): 491-501.
[45] 稠油油藏蒸汽吞吐水平井生產(chǎn)動(dòng)態(tài)分析. 斷塊油氣田, 2017, 24(1): 83-86.
[46] 過(guò)熱蒸汽吞吐水平井加熱半徑及產(chǎn)能預(yù)測(cè)模型. 特種油氣藏, 2017, 24(02): 120-124.
[47] Analytical method for performance evaluation of fractured horizontal wells in tight reservoirs. Journal of Natural Gas Science & Engineering, 2016, 33:419-426.
[48] An improved model for the prediction of liquid loading in gas wells. Journal of Natural Gas Science & Engineering, 2016,32:198-204.
[49] 裂縫性致密油藏非穩(wěn)態(tài)竄流規(guī)律. 斷塊油氣田, 2016, 23(3): 329-333.
[50] Potential of carbon dioxide miscible injections into the H-26 reservoir. Journal of Natural Gas Science & Engineering, 2016, 34: 1085-1095.
主要科研項(xiàng)目:
1、 中石油, 超深高凝油藏高效開(kāi)發(fā)技術(shù)政策優(yōu)化研究
2、 中石油, 吉木薩爾凹陷蘆草溝組頁(yè)巖油水平井壓后燜井及排采生產(chǎn)方式優(yōu)化
3、 國(guó)家973項(xiàng)目子課題,致密油多相多尺度流動(dòng)機(jī)理及滲流理論研究--致密油儲(chǔ)層縫網(wǎng)展布下多尺度多相非線(xiàn)性滲流模型的建立
4、 中國(guó)石油集團(tuán)科學(xué)技術(shù)研究院, 特高含凝析油頁(yè)巖氣藏流體相態(tài)特征分析和分段壓裂水平井?dāng)?shù)值模擬方法研究
5、 中石油, 王徐莊油田沙一下生物灰?guī)r油藏重構(gòu)地下認(rèn)識(shí)體系與增加可采儲(chǔ)量研究
6、 延長(zhǎng)油田股份有限公司,薄互層(低電阻)砂巖儲(chǔ)集層識(shí)別技術(shù)
7、 教育部, 高產(chǎn)及特高產(chǎn)油藏滲流特征與高效開(kāi)發(fā)設(shè)計(jì)
8、 中石油, 安第斯重油流動(dòng)能力及動(dòng)用策略研究
9、 中石化, 砂礫巖油藏采收率標(biāo)定方法研究
10、 中石油, 趙東油田儲(chǔ)層構(gòu)型與剩余油分布研究
11、 中石油, 低滲透油藏氮?dú)怛?qū)適應(yīng)性研究
12、 中石油, 唐家河油田精細(xì)油砂體刻畫(huà)與增加可采儲(chǔ)量研究
13、 中國(guó)石油天然氣股份有限公司勘探開(kāi)發(fā)研究院,蘇丹六區(qū)Fula斷塊稠油及FN AG稀油油田開(kāi)發(fā)調(diào)整策略研究
14、 延長(zhǎng)油田股份有限公司,低滲透裂縫性油藏高效注水與水竄治理技術(shù)研究
15、 國(guó)家科技重大專(zhuān)項(xiàng)子課題,西非及亞太大陸邊緣盆地油氣勘探開(kāi)發(fā)一體化技術(shù)-西非深水典型油氣田高效開(kāi)發(fā)產(chǎn)能評(píng)價(jià)研究
16、 國(guó)家自然科學(xué)基金,低滲透油藏非達(dá)西滲流機(jī)理與應(yīng)用
重要獎(jiǎng)勵(lì)與榮譽(yù):
1、指導(dǎo)的博士學(xué)位論文《基于自適應(yīng)代理模型的頁(yè)巖氣藏縫網(wǎng)參數(shù)優(yōu)化方法研究》獲得中國(guó)石油大學(xué)(北京)優(yōu)秀博士學(xué)位論文
2、指導(dǎo)的碩士學(xué)位論文《致密油藏體積壓裂水平井滲流模型及產(chǎn)能評(píng)價(jià)研究》獲得中國(guó)石油大學(xué)(北京)優(yōu)秀碩士學(xué)位論文
3、低品位油藏二氧化碳利用與埋存協(xié)同關(guān)鍵技術(shù),中國(guó)發(fā)明協(xié)會(huì),發(fā)明創(chuàng)業(yè)獎(jiǎng)-創(chuàng)新獎(jiǎng)一等獎(jiǎng)
4、中低滲復(fù)雜斷塊油藏非均質(zhì)動(dòng)態(tài)描述及精細(xì)調(diào)整技術(shù),中國(guó)技術(shù)市場(chǎng)協(xié)會(huì)金橋獎(jiǎng),科學(xué)技術(shù)獎(jiǎng)一等獎(jiǎng)
5、特/超低滲透油藏裂縫動(dòng)態(tài)表征與開(kāi)發(fā)調(diào)整應(yīng)用,中國(guó)石油和化學(xué)工業(yè)聯(lián)合會(huì)科學(xué)技術(shù)獎(jiǎng),科技進(jìn)步獎(jiǎng)二等獎(jiǎng)
6、非均質(zhì)裂縫性油藏大尺度物理模型研制,中國(guó)石油和化工自動(dòng)化行業(yè)科學(xué)技術(shù)獎(jiǎng) ,技術(shù)發(fā)明獎(jiǎng)一等獎(jiǎng)
7、復(fù)雜氣藏高效開(kāi)發(fā)理論與應(yīng)用,教育部,科學(xué)技術(shù)進(jìn)步獎(jiǎng)二等獎(jiǎng)
8、《油藏工程》課程體系建設(shè)與實(shí)踐,中國(guó)石油大學(xué)(北京)第六屆優(yōu)秀教學(xué)成果一等獎(jiǎng)
9、優(yōu)秀指導(dǎo)教師,全國(guó)石油工程設(shè)計(jì)大賽
10、《油藏工程》課程研究型教學(xué)與探索,中國(guó)石油大學(xué)(北京)第七屆優(yōu)秀教學(xué)成果一等獎(jiǎng)
11、博士生教材《現(xiàn)代油藏滲流力學(xué)原理》被北京市教委評(píng)為精品教材
12、獲得中國(guó)石油大學(xué)石油工程學(xué)院院長(zhǎng)獎(jiǎng)“最佳科研獎(jiǎng)”
13、被授予中國(guó)石油大學(xué)(北京)“科技創(chuàng)新優(yōu)秀指導(dǎo)教師”榮譽(yù)稱(chēng)號(hào)
14、被授予中國(guó)石油大學(xué)(北京)2016-2018年度“優(yōu)秀教師”榮譽(yù)稱(chēng)號(hào)
15、榮獲2018年度“中國(guó)百篇最具影響國(guó)際學(xué)術(shù)論文”
16、教育部新世紀(jì)優(yōu)秀人才,并獲得研究資助
社會(huì)與學(xué)術(shù)兼職:
1、SPE會(huì)員
2、雜志《大慶石油地質(zhì)與開(kāi)發(fā)》第五屆編委
3、《International Journal of Heat and Mass Transfer》, 《Journal of Natural Gas Science and Engineering》,《Journal of Petroleum Science and Engineering》,《Transport in Porous Media》,《Special Topics and Reviews in Porous Media》和《Petroleum Science》等審稿人
4、《石油學(xué)報(bào)》,《中國(guó)石油大學(xué)學(xué)報(bào)》和《石油鉆探技術(shù)》等審稿人